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Abstract

Species distribution models are used for numerous purposes such as predicting changes in
species’ ranges and identifying biodiversity hotspots. Although implications of distribution
models for conservation are often implicit, few studies use these tools explicitly to inform
conservation efforts. Herein, we illustrate how multiple distribution models developed using
distinct sets of environmental variables can be integrated to aid in identification sites for use
in conservation. We focus on the endangered arroyo toad (Anaxyrus californicus), which
relies on open, sandy streams and surrounding floodplains in southern California, USA, and
northern Baja California, Mexico. Declines of the species are largely attributed to habitat
degradation associated with vegetation encroachment, invasive predators, and altered
hydrologic regimes. We had three main goals: 1) develop a model of potential habitat for
arroyo toads, based on long-term environmental variables and all available locality data; 2)
develop a model of the species’ current habitat by incorporating recent remotely-sensed
variables and only using recent locality data; and 3) integrate results of both models to iden-
tify sites that may be employed in conservation efforts. We used a machine learning tech-
nigue, Random Forests, to develop the models, focused on riparian zones in southern
California. We identified 14.37% and 10.50% of our study area as potential and current hab-
itat for the arroyo toad, respectively. Generally, inclusion of remotely-sensed variables
reduced modeled suitability of sites, thus many areas modeled as potential habitat were not
modeled as current habitat. We propose such sites could be made suitable for arroyo toads
through active management, increasing current habitat by up to 67.02%. Our general
approach can be employed to guide conservation efforts of virtually any species with suffi-
cient data necessary to develop appropriate distribution models.
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Introduction

Habitat loss and degradation are major causes of biodiversity loss in terrestrial and freshwater
ecosystems [1]. Urbanization and agricultural expansion are among the primary drivers of
alterations to natural habitats, causing land cover change. Indirect effects of these disturbances
manifest in myriad ways: invasive vegetation can displace native species and alter physical hab-
itat structure [2]; changes in hydrology can impact riparian conditions [3]; and introduced ani-
mals can alter ecosystems through trophic interactions [4]. Site-specific actions can improve
habitats for individual species, though identifying appropriate locations for conservation
efforts poses a challenge [5,6].

Within the ever-expanding toolkit for conservation biologists, species distribution models
(SDMs) have become commonly employed for various purposes [7,8]. Though species distri-
bution modeling can have various connotations and meanings, we follow a convention of
using it to encompass the concept of habitat suitability models, environmental niche models,
and others [7]. The principle behind species distribution modeling is that relationships among
species’ locality data and associated environmental variables can be used to make inferences of
where else suitable conditions exist [8].

Common applications of SDMs include predicting how climate change may contribute to
species extinctions and range shifts [9,10], identifying locations with undescribed species and
new localities or habitat of known species [11,12,13], and projecting distributions of invasive
species [14,15]. SDMs can also be used to estimate recent habitat loss for individual species
[16], and to predict future habitat loss given changes in particular variables [17]. Although
SDMs can be employed to explicitly guide conservation efforts, the published literature is lack-
ing examples [18].

We focused this study on the arroyo toad (Anaxyrus californicus), which is endemic to
southern California, USA and northern Baja California, Mexico [19,20]. It is a habitat special-
ist, closely tied to open, sandy streams and surrounding floodplains [20,21]. The species is
listed as endangered by the U.S. Fish and Wildlife Service [22,23] and by the IUCN [19], facing
threats of habitat destruction, habitat degradation, and invasive predators [20]. Anthropogenic
alterations to hydrologic regimes and wildfire frequency have contributed to these threats,
though it is possible to improve habitat through site-specific actions. For example, decreases of
an introduced predator, the American bullfrog (Lithobates catesbeianus) can increase arroyo
toad occupancy and abundance [24], and clearing of riparian vegetation may benefit breeding
habitat. An active proposal to downlist the arroyo toad to threatened status cites ongoing, albeit
decreased threats to the species [25], and corrects for previously erroneous locality records
[26].

We developed and integrated multiple SDMs for the arroyo toad using static and dynamic
environmental datasets [17] with the objective of identifying sites that can be used to create
additional habitat for the species. We had three main goals: 1) develop a model of potential
habitat for arroyo toads, based on long-term, static environmental variables (hereafter, the
“potential model”); 2) develop a model of the species’ current habitat by incorporating time-
sensitive remote sensing data and only using locality data since 2005 (hereafter, the “current
model”); and 3) integrate results of both models to identify sites that may be used for arroyo
toad conservation. In addition to using SDMs to map habitat for arroyo toads, our techniques
allowed us to further elucidate environmental characteristics associated with presence of the
species.

SDMs exist for other amphibians in arid environments [27], and an early SDM was devel-
oped for arroyo toads in a portion of our study area [28]. Our models cover a large spatial
extent at high resolution, and help identify sites with potential to be improved as habitat,
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through actions such as thinning of stream-side vegetation to create more open riparian areas.
Our model results may also inform future translocation efforts, and surveys for unknown pop-
ulations of arroyo toads. Furthermore, our general methodology can be employed to guide con-
servation of other species in different systems.

Methods
Ethics Statement

The following institutions and organizations authorized field work associated with this study
and issued the respective permits: The Texas A&M University Animal Care and Use Commit-
tee: AUP 2012-125; U.S. Fish and Wildlife Service: Recovery Permits TE-045994 and TE-
73366A-0; California Department of Fish and Wildlife, Scientific Collecting Permits 00090 and
11723.

Study Area

Our study focused on five coastal watersheds of southern California (based on HUC-8 classifi-
cation; [29]): the Aliso-San Onofre; the San Luis Rey-Escondido; the San Diego; the Santa Mar-
garita; and the U.S. portion of the Cottonwood-Tijuana watershed. This area has undergone
significant anthropogenic land cover changes in recent decades [30], and further development
is projected into the future [31]. However, this region has active conservation programs (e.g.,
the Multiple Species Conservation Plan), with local stakeholder groups working to restore
native ecosystems [32], thus our results can be readily adopted to guide on-the-ground actions.
Furthermore, this area may comprise a reasonable management unit for the species, as range-
wide genetic analyses showed arroyo toad populations from these drainages were more closely
related to each other than to other populations [33].

Units of Analysis

We focused on streams and stream-side areas, corresponding to primary habitats used by
arroyo toads [20,21,34] (Fig 1). For the best spatial accuracy we used stream data from the
1:24,000 scale National Hydrography Dataset (NHD; http://nhd.usgs.gov). We excluded
extremely small stream segments, generally not used by arroyo toads, by eliminating sections
that were not assigned an order in the 1:100,000 scale NHDPlus dataset (http://www.horizon-
systems.com/nhdplus; 1:24,000 scale NHD data do contain stream order data). We accom-
plished this using a spatial overlay with a 50 m buffer of the streams to account for differences
in spatial accuracy between these two datasets, using Manifold GIS version 2.0.28 (Manifold
Software Limited). We converted remaining stream segments to a spatial layer of 200 m x 200
m square sample units (as pixels of a raster dataset), which allowed us to better incorporate
metrics characterizing streams and stream-side areas. We removed sample units identified as
water in the STATSGO?2 Soil Database (http://soildatamart.nrcs.usda.gov) to mask out large
water bodies, known not to serve as habitat for arroyo toads. Higher-resolution data (1:100,000
scale) in the SSURGO soil dataset were unavailable for parts of our study area, thus we used the
STATSGO?2 dataset in this study (1:250,000 scale). All of these spatial data sources were
accessed in August and September 2013.

Environmental Data

In both models we used static variables [17], characterizing climate, soil, topography, and geo-
morphology (Table 1). In the current model we also used 2010 Landsat TM imagery [35] to
derive indices of brightness, greenness, and wetness (i.e., Tasseled Cap bands), as dynamic
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Fig 1. Map of streams and topography of southwestern California. This map illustrates streams (in blue),
overlaid on a hillshade layer of southwestern California, USA, covering five focal watersheds: the Aliso-San
Onofre, the San Luis Rey-Escondido, the San Diego, the Santa Margarita, and the U.S. portion of the
Cottonwood-Tijuana.

doi:10.1371/journal.pone.0131628.g001

variables. These metrics characterize various aspects of land cover including vegetation, sub-
strate, and moisture [36]. We assumed relatively little land cover change along riparian areas in
our focal period (2005-2013), and by using imagery from a fairly central year, we minimize
potential effects of drastic land cover differences from the beginning to the end of our focal
period. Additionally, climate conditions for 2010 were nearly average (based on annual climate
reports for San Diego County queried from http://www.ncdc.noaa.gov, accessed September
2013), which is important in that weather can influence vegetation and hydrologic patterns
detected in imagery, ultimately influencing activity of arroyo toads. We obtained cloud-free
imagery for 27 March and 3 September, representing wet and dry seasons, respectively. We
converted raw data to top of atmosphere reflectances, atmospherically corrected them using
dark object subtraction (DOSI; [37]), derived Tasseled Cap bands using the Tasseled Cap
Transformation [36] in GRASS GIS version 6.4.4 [38], and extracted the median and variance
per sample unit. We prepared environmental data for analyses using SAGA GIS version 2.1.1
[39] and Manifold GIS version 8.0.28 (Manifold Software Limited).

Given the large number of predictor variables, we used principal component analyses
(PCAs) to derive reduced variable-sets [40]. For each model, we conducted a PCA on the corre-
lation matrix of predictor variables, and used principal components (PCs) with eigenvalues
greater than one in place of the original data, following Kaiser’s rule [40]. We conducted PCAs

PLOS ONE | DOI:10.1371/journal.pone.0131628 June 30, 2015 4/18


http://www.ncdc.noaa.gov/

@'PLOS ‘ ONE

Integrating Distribution Models to Guide Conservation Efforts

Table 1. Description of environmental data layers used in models of arroyo toad habitat.

Name (Abbreviation) ' Description Value Used

Climate Data

Avg. Monthly. and Annual: Precipitation (Ppt
[1-13]); Maximum Temperature (TMx [1—
13]); and Minimum Temperature (TMn [1—
13])

Soil Data

% Clay (Clay); % Sand (Sand); % Silt (Silt);
Soil Water Storage Capacity (WaterSt)

Average values from 1981-2010;
original pixel size of 800 m

Majority value per
analysis pixel

Weighted average of values per
soil type across all soil layers,
obtained from 1:250,000 scale soil
data

Average, weighted by
area of each soil type
per analysis pixel

Topography and Geomorphology

Elevation along Stream Segment (Elev) Estimated as lowest elevation Calculated value per

value within analysis pixels analysis pixel
% Stream Slope (Slope) Estimated within each analysis Calculated value per
pixel using GIS data for elevation analysis pixel

and streams

Measure of how flat and wide a
valley is.

Multiresolution Index of Valley Bottom
Flatness (MRVBF)

Maximum value per
analysis pixel

Vector Ruggedness Measure (VRMO03 and
VRM18)

Measure of how rugged terrain is,
based on, analysis windows of 3
and 18 pixels from 10 m NED

Total area draining into a given
analysis pixel

Minimum values per
analysis pixel
Catchment Area (CatchArea) Maximum value per
analysis pixel

Remotely Sensed Data

Brightness (Bri[3,9].Med, Bri[3,9].Var);
Greenness (Grn[3,9].Med, Grn[3,9].Var);
Wetness (Wet[3,9].Med, Wet[3,9].Var)

Indices of “brightness,”
“greenness,” and “wetness” for 27
March and 9 Sept. 2010.

Median (Med) and
Variance (Var) within
analysis pixel

Source

PRISM Climate Group, Oregon State
University®

Derived from STATSGO2 Soil Data,
produced by the Natural Resources
Conservation Service, U.S. Dept. of
Agriculture®

10 m National Elevation Dataset (NED;
[7on *

Derived from 10 m NED overlaid on
1:24,000 National Hydrologic Dataset®

Derived from 10 m NED using
methodology described by Gallant and
Dowling [71]

Derived from 10 m NED using
methodology described by Sappington
et al. [72]

Derived from sink-filled 10m NED using
methodology described by Gruber and
Peckham [73]

Derived from Landsat TM imagery® using
the Tasseled Cap Transformation [36] for
Landsat data [35].

1 Bracketed numbers with abbreviations denote corresponding months layers were from (1—12) or indicate that it is the annual average (13)

2 Available from: http:/www.prism.oregonstate.edu/

3 Available from: http:/soildatamart.nrcs.usda.gov

4 Available from: http://viewer.nationalmap.gov/viewer/

5 Available from: http:/nhd.usgs.gov

6 Available from: http:/landsat.usgs.gov/Landsat_Search_and_Download.php

doi:10.1371/journal.pone.0131628.t001

using the package ‘vegan’ [41] in R version 3.0.2 [42]; we present tables with variable loadings

as supporting information (S1 File).

Arroyo Toad Locality Data

We obtained locality data for arroyo toads from the U.S. Fish and Wildlife Service (http://
www.fws.gov/carlsbad/GIS/CFWOGIS.html) and we also used museum records from the fol-

lowing institutions, accessed through the HerpNet data portal (http://herpnet.org/): California
Academy of Sciences; Natural History Museum of Los Angeles County; San Diego Natural His-
tory Museum; Smithsonian National Museum of Natural History; and University of California,
Berkeley, Museum of Vertebrate Zoology. We included data from Cleveland National Forest
[43,44], and our own surveys conducted as part of the U.S. Geological Survey (USGS) Amphib-
ian Research and Monitoring Initiative (ARMI; http://armi.usgs.gov/) and the San Diego Mon-
itoring and Management Program (SDMMP; http://sdmmp.com). Datasets were accessed in
September 2013.
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Given undocumented spatial accuracy for some sources, and our focus on stream habitats,
we excluded data outside a 50 m buffer of the streams to minimize potential error, and we
removed data that had accuracy documented as >160 m in the U.S. Fish and Wildlife Service
dataset. For analyses, we used the final locality data as presence per sample unit. Locality rec-
ords ranged from 1927 to 2013 and occurred among 1,037 sampling units. All but nine of these
sampling units had at least one record from 1990 or later, and those that did not were generally
in the vicinity of more recent records. Given our potential model is based on long-term, rela-
tively stable environmental variables, we consider locality records from the entire temporal
range as informative in understanding where the species could occur without constraints asso-
ciated with land cover characteristics. For the current model, we used presence records from
2005 to 2013, among 791 sample units.

We incorporated absence data into our current model, attained through standardized day-
time and nighttime surveys [24,45], conducted as part of ARMI and SDMMP. Low detection
probabilities of focal species can result in false-absences, in which species are recorded as not
present at sites where they actually occur, contributing error in subsequent analyses. In distri-
bution modeling studies, inaccurate absence records could result, erroneously, in a more con-
strained distribution of focal species. Thus, based on previous work investigating detectability
of arroyo toads [45], we considered the species absent from sample units where it was not
detected at least once in eight nighttime surveys or five daytime surveys since 2005, minimizing
our chances of including false-absence records. If a sample unit had presence and absence rec-
ords since 2005, the presence record was given priority. Based on these criteria, we had absence
records among 89 sample units for the current model.

Species Distribution Models

Model Development. We used Random Forests [46] to develop the potential and current
models. This is a machine-learning technique that merges classification and regression trees
with a bootstrap resampling procedure to create an optimal model [47]. Random Forests
reduces problems of over-fitting and does not rely on assumptions of parametric methods
[48,49], and it has been implemented in a variety of ecological studies [47,50,51].

Random Forests is generally considered a presence/absence method [7], but has successfully
been used with presence/pseudoabsence data [52,53]. Pseudoabsences are used when true
absence data are unavailable, and they are acquired by sampling locations from the study
region that lack locality records [8]. Given that imbalanced training datasets can decrease
model fit and contribute to bias [54], we generated sufficient numbers of pseudoabsences for
both models to create balanced datasets. Thus, we used presence/pseudoabsence data for our
potential model, and a combination of presence/absence and pseudoabsence data in our cur-
rent model. To account for spatial biases in our arroyo toad data that could influence model
results we selected pseudoabsences with the same spatial biases as our data based on kernel
density surfaces [55,56]. We ran models 10 times with different pseudoabsence points and
averaged the results [57], effectively reducing weight of individual pseudoabsence points rela-
tive to verified presences and absences, and ultimately minimizing potential error due to the
location of individual pseudabsences, for which we cannot verify absence of arroyo toads.

We implemented Random Forests using the ‘randomForest’ package [58] in R [42]. We set
the number of bootstrapped trees (k) based on the point at which the error rate for withheld
(out-of-bag [OOB]) samples stabilized. Given that variable interaction may stabilize at a slower
rate than the OOB error [48], we used twice that number, setting k = 10,001. In each tree, the
OOB sample was 36.8%, and the number of variables permuted at each branching node was set
to the square root of the number of variables. We used preliminary model comparisons to
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investigate whether removal of any PC-transformed variables would yield more parsimonious
results [50,59], though we found inclusion of all variables was optimal. We used the final, aver-
aged models to predict habitat in our study area in terms of “probability of occurrence” [8],
and we used the mean decrease in accuracy for randomized permutations of input variables as
a measure of variable importance [58]. Figures representing per-sample unit coefficient of vari-
ation across the 10 runs for potential and current models are available in supporting informa-
tion (S2 File).

Model Evaluation. We evaluated model performance by comparing probabilities of occur-
rence with presence/pseudoabsence data (potential model) and presence/absence data (current
model). As a threshold-independent metric of model performance, we used the area under the
receiver operating curve (AUC), which ranges 0.5-1.0; models with values >0.9 are considered
to have high performance [7,8]. As a measure of model significance, we also compared our
models to 1,000 models of randomized presence/absence data, calculating the p-value as the
proportion of times that the OOB error in randomized models was less than that of our models
[50,59]; we set o to 0.05.

We also used threshold dependent measures of model performance [7] in which probabili-
ties of occurrence were converted to binary predictions of presence/absence and compared to
the original data. We set the cutoff value for binary predictions to the lowest modeled probabil-
ity of occurrence for a sample unit with confirmed arroyo toad presence [12,60]. We calculated
the True Skill Statistic (TSS; [61]) and misclassification rates for our models. TSS ranges -1-1
and misclassification rates range 0-1; higher values of TSS and lower values of misclassification
rates indicate better model performance.

Identification of Conservation Opportunities and Comparison of Model
Results

We integrated results of the potential and current models to identify areas that may be
employed in conservation of the arroyo toad by subtracting the binary presence/absence pre-
dictions of the current model from those of the potential model. This yielded a map illustrating
the differences in prediction of habitat between the two models, with three possible values at
each sample unit: 1 —sample unit was predicted as habitat in the potential model, but not the
current model; 0 —-no change in predictions; and -1 —sample unit was predicted as habitat in
the current model, but not the potential model. We consider sample units with a value of 1 as
representing sites that should be considered for habitat management and restoration, as the
intrinsic conditions are predicted to be suitable for arroyo toads. We anticipated sample units
with values of -1 would be rare, but possible given the current model may include interactions
between dynamic and static variables. To compare the amount of habitat predicted among the
potential and current models, we calculated the percentage of sample units predicted to be hab-
itat in each.

We also calculated how much modeled habitat is on lands precluded from development by
overlaying our results with boundaries for conserved lands in our study area. We obtained the
most comprehensive and accurate boundaries of conserved lands available for our study area
as follows: for San Diego County, from the San Diego Monitoring and Management Program
(http://sdmmp.com/Online_Map.aspx, accessed March 2014); for Riverside County, from the
Public and Quasi-Public Conserved Lands dataset (http://gis.rivcoit.org/GISData.aspx,
accessed May 2014); and for Orange County, from the California Protected Areas Database
(version 2014a; http://projects.atlas.ca.gov/projects/cpad/, accessed May 2014). For San Diego
County, comprising the majority of our study area, these included all areas legally required to
maintain open space of various forms, including natural habitats, and for specific species,
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through easements, habitat conservation plans, and fee title ownership designations. For River-
side County, these included all lands owned or managed by the county for purposes of long-
term conservation, including those contributing to multi-species conservation programs. For
Orange County, these boundaries designated lands protected in various forms of open space
through fee title ownership designations. We conducted this analysis using Manifold GIS ver-
sion 8.0.28 (Manifold Software Limited).

Results
Model Evaluation and Summary

Our models performed well based on all fit metrics. All runs for both models were significant
based on permutation tests (p<<0.001), and AUC values for models were 0.957 for the potential
model and 1.000 for the current model. For threshold dependent measures of fit, the cutoff val-
ues for binary predictions were 0.435 and 0.492 for potential and current models, respectively,
resulting in TSS values of 0.809 and 1.000. Back-predictions to our presence/pseudoabsence
and presence/absence data had 9.60% and 0.00% misclassification rates in the potential and
current models, respectively. Maps illustrating the presence/absence predictions are presented
in Figs 2 and 3.

Distinct variables contributed to the potential and current models (Table 2). In the potential
model, PCs representing soil and topography were most influential, though in the current
model the most important PCs represented aspects of climate, elevation, and wetness
(Table 2). Given that machine learning techniques are optimized for predictive performance
and they implicitly include complexities such as variable interactions, relationships among var-
iables can be difficult to interpret [47], though we provide some interpretation of our model
results in Table 2.

Both models showed similar relationships between habitat suitability and relatively static
variables (Table 2). For example, both models indicate positive relationships between habitat
suitability and percent sand in the soil, valley bottom flatness (MRVBF), catchment area drain-
ing into the site, maximum temperatures in the summer, and minimum temperatures in the
winter and spring. Our models also indicated negative relationships between habitat suitability
and percent silt and percent clay in the soil, slope, elevation, and late-summer precipitation. In
addition, our current model indicated positive relationships between habitat suitability and
brightness and per-sample unit variance in brightness, and negative relationships between hab-
itat suitability and greenness, wetness, and variance in wetness.

Identification of Conservation Opportunities and Comparison of Model
Results

Of the 46,305 sample units in our study area, 3,260 were modeled as potential habitat, but not
current habitat (Fig 4). This represents 7.04% of our focal area, which has potential to be
employed in habitat improvement and conservation efforts, but is not currently suitable for the
species. An additional 1,467 sample units were modeled as current but not potential habitat.
Individually, our models predict potential habitat in 14.37% and current habitat in 10.50% of
the sample units in our study area. Thus, we estimate a net decrease of 26.93% in modeled hab-
itat, resulting from constraints associated with dynamic variables in our current model, repre-
senting land cover characteristics.

Of the sample units that our models identify as potential and current habitat, 35.61% and
33.48%, respectively, are on conserved lands. Furthermore, of the sample units identified as
potential but not current habitat, 33.37% are on conserved lands. Thus, approximately two-
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Fig 2. Modeled potential distribution of the arroyo toad in southwestern California. This map depicts
the modeled potential distribution of the arroyo toad in streams and stream-side areas of southwestern
California. Input data for the model included presence/pseudoabsence data and relatively stable, long-term
environmental data representing characteristics of topography, soil, and climate. The Random Forests
algorithm was used to develop the model, from which we predicted the probability of arroyo toad presence
throughout our study area. The model performed well, with an Area Under the Receiver Operating Curve of
0.957 and a True Skill Statistic of 0.809. The lowest modeled probability of arroyo toad presence for a site
known to have arroyo toads was 0.435. Sites with modeled probability of presence lower than this value were
designated as not habitat (blue) and sites with probabilities of presence greater than or equal to this value
were designated as habitat (yellow). Based on this model, of our 46,305 sample units, arroyo toads were
predicted to occur in 14.37%.

doi:10.1371/journal.pone.0131628.9002

thirds of sites with modeled habitat and the potential to serve in conservation efforts may be
susceptible to future development pressures.

Discussion

Our study illustrates how integration of multiple SDMs can yield valuable results for guiding
conservation efforts. Individually, our potential and current SDMs for the endangered arroyo
toad indicate that 14.37% of our study area has intrinsic characteristics likely suitable for the
species, and 10.57% of the area may currently be suitable. By integrating results of these mod-
els, we identified 7.04% of our study area as potential habitat but not current habitat; we pro-
pose local management of these sites could render them suitable for arroyo toads, resulting in
an increase of current habitat by up to 67.02%. Relevant management strategies suggested by
our results may include thinning of stream-side vegetation to create more open riparian
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Fig 3. Modeled current distribution of the arroyo toad in southwestern California. This map depicts the
modeled current distribution of the arroyo toad in streams and stream-side areas of southwestern California.
Input data included presence/absence and pseudoabsence data, long-term environmental data representing
characteristics of topography, soil, and climate, and indices of Brightness, Greenness, and Wetness, which
represent more dynamic characteristics of land cover, derived from 2010 Landsat TM imagery. The Random
Forests algorithm was used to develop the model, from which we predicted the probability of arroyo toad
presence throughout our study area. The model performed well, with an Area Under the Receiver Operating
Curve and True Skill Statistic of 1.0. The lowest modeled probability of arroyo toad presence for a site known
to have arroyo toads was 0.492. Sites with modeled probability of presence less than this value were
designated as not habitat (blue) and sites with probabilities of occurrence greater than or equal to this value
were designated as habitat (yellow). Of 46,305 sample units, arroyo toads were predicted to occur in 10.57%
based on relatively static landscape characteristics.

doi:10.1371/journal.pone.0131628.g003

habitats, particularly in areas with sandy soils and larger floodplains. Given the remotely-
sensed variables we used in our current model, this model should reflect such management at
individual sites, given updated satellite imagery. Though studies that employ SDM:s typically
are not well-linked to on-the-ground conservation efforts [18], our models can directly inform
management actions, helping answer the difficult question of where to focus limited resources
[5,6].

Our general approach can be applied to virtually any taxa with sufficient locality informa-
tion, in regions with relevant environmental datasets necessary for distribution models. We
classified predictor variables as static or dynamic based on our objectives and focal time period.
Future studies may incorporate additional variables in either category, and reclassify variables
we used if deemed appropriate. Specific modeling techniques employed can also be adjusted,
though our use of a transition map to integrate results of multiple models is valuable in
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Table 2. Importance of the PCA-transformed variables in the potential and current models.

Principle
Component

Potential Model
PC4

PC2
PC1
PC7
PC3
PC6
PC5

Current Model
PC1

PC2
PC7
PC3
PC10
PC4
PC6
PC8
PC9

PC5

Highest-Loading Environmental Variables'(Positive and Negative)

(+) MRVBF; WaterSt; Sand; CatchArea; Ppt11(-) VRM18; Slope; VRMO0S3;
Silt; Clay; Ppt07

(+) TMx05; TMx09; TMx08; TMx06; TMx13(-) TMn07; TMn08; Ppt06;
TMn06; TMn09

(+) Elev; Ppt09; Ppt08; Ppt07; Ppt13(-) TMn04; TMn03; TMn05; TMn02;
TMn10

(+) Slope; Ppt06; Sand; TMn12; TMn01(-) CatchArea; VRM03; WaterSt;
VRM18; MRVBF

(+) MRVBF; Ppt08; Ppt07; Sand; WaterSt(-) Ppt06; Ppt02; Ppt01; Ppti1;
Ppt10

(+) VRMOS; Ppt06; TMx12; TMx01; TMx11(-) TMn07; TMn08; TMx06;
TMx07; TMn09

(+) Silt; Clay; WaterSt; MRVBF; Ppt06(-) Sand; VRM18; VRMO3; Slope;
CatchArea

(+) Elev; Ppt09; Ppt08; Ppt07; Ppt13(-) TMn04; TMn03; TMn05; TMn02;
TMn10

(+) TMx05; TMx09; TMx06; TMx08; TMx13(-) Wet09.Var; TMn07; TMn08;
Ppt06; Wet03.Var

(+) Silt; Clay; Grn03.Med; Wet03.Med; Grn09.Med(-) Sand; Ppt01; Brt09.
Var; CatchArea; TMn07

(+) Ppt06; TMx09; Ppt02; Ppt01; VRM18(-) Brt09.Var; MRVBF; Brt03.Var;
Ppt08; Ppt07

(+) Grn03.Var; Wet09.Med; Grn09.Var; Brt09.Med; Slope(-) CatchArea;
VRMO03; WaterSt; VRM18; Brt09.Var

(+) Wet09.Med; Wet03.Med; Brtr09.Med; Brt03.Med; Grn03.Med(-) Slope;
VRM18; VRMOS; Silt; Clay

(+) Wet09.Var; Gr09.Var; Wet03.Var; Grn09.Med; Sand(-) Silt; Brt04.Var;
Brt09.Var; Clay; Brt03.Med

(+) Grn03.Var; VRMO03; VRM18; Slope; Sand(-) MRVBF; TMn07; TMn08;
Silt; TMx06

(+) Brt09.Med; Brt03.Med; Wet09.Var; Ppt03; TMx11(-) Brt03.Var; Grn09.
Var; Grn03.Var; TMn07; TMn08

(+) Brt03.Med; Brt09.Med; VRM18; Wet09.Var; Slope(-) Grn03.Var; Brt09.
Var; Brt03.Var; MRVBF; WaterSt

'Five highest-loading variables for each PC are listed, ordered by decreasing importance.

doi:10.1371/journal.pone.0131628.t002

Relationship with Habitat
Predictions

Mean Decrease in

Accuracy

0.1078
0.0766
0.0738
0.0727
0.0689
0.0628

0.0580

0.0611
0.0540
0.0457
0.0447
0.0432
0.0310
0.0288
0.0255
0.0216

0.0108

identification of sites with conservation potential. The transition map also aids in visualization
of results and helps convey information to stakeholders.

Subsequent steps necessary for conservation of arroyo toads based on our results may
involve surveys to document unknown populations, habitat improvement actions such as

removal of riparian vegetation and exotic predators, and translocation of the species to unoccu-
pied habitat. Of the sample units we identify as targets for habitat improvement efforts, only
one-third are on conserved lands, thus long-term conservation will require working closely
with stakeholders in the region. For example, Marine Corps Base Camp Pendleton is currently
managed for arroyo toads, and contains 13.12% and 10.97% of the modeled potential and cur-
rent habitat, respectively. However, long-term persistence of arroyo toads will depend on coop-

erative efforts.

PLOS ONE | DOI:10.1371/journal.pone.0131628 June 30, 2015
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Fig 4. Comparison of two models of the distribution of the arroyo toad in southwestern California.
This map was derived from two models for the distribution of the arroyo toad in southwestern California. Both
models focused on streams and stream-side areas, and used relatively stable, long-term predictor variables
characterizing aspects of soil, topography, and climate. The first model (potential model) only used those
predictor variables and was designed to identify areas that may be suitable for the species based on intrinsic
characteristics of the landscape. The second model (current model) also integrated more dynamic variables
associated with current land cover conditions, and was designed to identify sites that may be suitable for the
species, given constraints of land cover characteristics. This map represents the differences in predictions
among the two models: black areas represent sites for which prediction of habitat did not change from the
potential to the current model; blue represents sites predicted as potential but not current habitat, and yellow
represents sites predicted as current but not potential habitat.

doi:10.1371/journal.pone.0131628.9g004

Our models performed well, and general associations we identified between static variables
and arroyo toad habitat (Table 2) are corroborated in [28] and other work summarized by the
U.S. Fish and Wildlife Service [62]. For example, those studies documented associations
between arroyo toads and third and higher-order streams. We used several continuous geo-
morphological measures in place of stream order to more precisely represent conditions [63],
but found comparable relationships, with habitat identified in areas with high MRVBF, low
Slope, and low VRM. Similarly, our models and the earlier studies all document associations
between arroyo toads and sandy soils. Though these variables are characteristics of the land-
scape and it may not be possible to alter them to improve habitat, they are informative in iden-
tifying sites where suitable habitat may exist.

Tasseled Cap metrics served as effective dynamic variables, representing temporally-spe-
cific, continuous measures associated with land cover. Our current model indicates positive
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relationships between habitat suitability and both median and variance in per-sample unit
brightness. High brightness tends to be associated with bare ground [36]. Thus, this relation-
ship likely characterizes the preference of arroyo toads for open, sandy streams [21,34]; high
variance in brightness may be driven by streams passing through sample units, surrounded by
brighter areas of bare ground. This aligns with the generally negative relationships between
habitat suitability and high median greenness and wetness, as arroyo toads are generally associ-
ated with sparsely vegetated, sandy flats [21,34].

These results, in conjunction with inspection of high resolution 2010 aerial imagery (Fig 5),
support that transitions from modeled potential habitat to not current habitat are attributable
to land covers not likely suitable for arroyo toads. All sites presented in Fig 5 were modeled as
potential habitat and had historic locality records at or nearby them. Sites A, at Marine Corps
Base Camp Pendleton, and D, at Buckman Springs in the Descanso District of Cleveland
National Forest, were also modeled as current habitat, with open sandy streams, but sites B, at
Barker Valley in the Palomar District of Cleveland National Forest and C, along a golf course
in El Cajon, CA were not, and contain dense riparian vegetation and considerable anthropo-
genic development, respectively. We are unaware of recent survey work at site C, though our
own visits to site B, while not enough to definitively declare absence, have not yielded any
detections. We note this site was previously more open, and arroyo toads were documented
there as recently as the late 1990s, though it has experienced considerable vegetation
encroachment.

Of the 4,862 sample units identified as current habitat, only 791 have recent records of
arroyo toads, and of those, only 264 are within conserved lands. Multiple factors may contrib-
ute to the lack of confirmed presence in sites with modeled habitat. First, arroyo toads may be
present in sites where no surveys have been conducted to document them. Second, sites may
currently be suitable, but historic conditions caused local extirpations. Lastly, some errors may
exist, stemming in part from the fact that it is impossible to encompass all habitat variables rel-
evant to the persistence of arroyo toads in such an analysis. For example, we could not incorpo-
rate variables reflecting fine-scale hydrology, which may influence breeding success.

Although the relationships we identify between dynamic variables and habitat suitability are
interpretable and supported by the literature, our models are best used for identifying potential
and current habitat, rather than making prescriptive recommendations to restore habitat.
Machine learning methods such as Random Forests are robust classification algorithms that
can yield accurate predictions, though variable relationships can be difficult to interpret, partic-
ularly given potential for complex interactions [47]. Furthermore, though our use of Tasseled
Cap metrics resulted in a well-fitting model of the current distribution of the arroyo toad, these
metrics are not directly transferable to specific land cover or vegetation types. Using discrete
land cover classifications may yield improved interpretability, at the risk of introducing classifi-
cation error. For example, an accuracy assessment of the 2006 National Land Cover Dataset
reported 80% accuracy [64]. Thus, our models are valuable in identifying sites that may be
used in conservation of arroyo toad, but site-specific management recommendations may be
best informed by existing studies on natural history, fine-scale habitat use, and occurrence pat-
terns of the species [20,21,24,34].

Though our study focuses on identifying site-specific opportunities for arroyo toad conser-
vation, future work should also consider large-scale processes that affect these habitats. Fresh-
water ecosystems are sensitive to environmental conditions across entire watersheds [65,66],
and in an area slightly north of ours negative relationships between watershed-scale urbaniza-
tion and abundance of native amphibians have been documented [67]. Complexities of factors
influencing habitat at multiple scales can create unanticipated challenges for conservation [68].
However, integration of results from studies such as ours with information on species’
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Fig 5. Aerial imagery of sites modeled as suitable and not suitable for arroyo toads based on current
conditions. All four panels (A-D) depict a 100 m buffer of stream channels (outlined and hatched in blue),
overlaid on 2010 aerial imagery. Sites presented in all panels were modeled to be suitable based on relatively
static long-term environmental variables. Based on relatively dynamic variables associated with recent land
cover, the sites in panels A and D were modeled to be currently suitable, with open, sandy habitats around
the streams, but those in panels B and C were not, with considerable vegetation encroachment and
anthropogenic development, respectively. The inset (middle) depicts the location of each site, within the focal
study area of southwestern California, USA. The imagery is 1 m pixel resolution, and is public domain,
courtesy of the U.S. Department of Agriculture, Farm Service Agency.

doi:10.1371/journal.pone.0131628.g005

ecologies, causes of decline, and larger-scale analyses [69] should yield the effective strategies
to protect and restore species across broader landscapes into the future.
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