Pneumocystosis in Wild Small Mammals from California

Juha Laakkonen,^{1,3} **Robert N. Fisher,**² **and Ted J. Case**^{1,1} Department of Biology, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0116, USA; ² USGS Western Ecological Research Center, Department of Biology, San Diego State University, San Diego, California 92182-4614; ³ Corresponding author (e-mail: Juha@biomail.ucsd.edu).

J. Parasitol., 89(6), 2003, pp. 1153–1158 © American Society of Parasitologists 2003

MICROPARASITE ASSEMBLAGES OF CONSPECIFIC SHREW POPULATIONS IN SOUTHERN CALIFORNIA

Juha Laakkonen*, Robert N. Fisher†, and Ted J. Case

Section of Ecology, Behavior and Evolution, Division of Biology, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0116. *e-mail: juha.laakkonen@metla.fi*

1 RH: Research Note

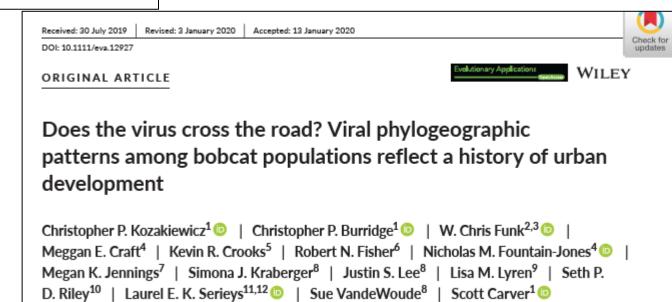
2

- Eimeria albigulae (Apicomplexa: Eimeriidae): New Host and Distributional Record from
- the Bryant's Woodrat, Neotoma bryanti (Rodentia: Cricetidae), from California, U.S.A.

5

6 CHRIS T. MCALLISTER, 1,4 JOHN A. HNIDA, 2 AND ROBERT N. FISHER³

OPEN & ACCESS Freely available online


Three Pathogens in Sympatric Populations of Pumas, Bobcats, and Domestic Cats: Implications for Infectious Disease Transmission

Sarah N. Bevins¹*, Scott Carver², Erin E. Boydston³, Lisa M. Lyren³, Mat Alldredge⁴, Kenneth A. Logan⁵, Seth P. D. Riley⁶, Robert N. Fisher¹⁰, T. Winston Vickers⁷, Walter Boyce⁷, Mo Salman⁸, Michael R. Lappin⁸, Kevin R. Crooks⁹, Sue VandeWoude²

Ecological Applications, 26(2), 2016, pp. 367–381 © 2016 by the Ecological Society of America

Pathogen exposure varies widely among sympatric populations of wild and domestic felids across the United States

Scott Carver, 1,2,16 Sarah N. Bevins, Michael R. Lappin, Erin E. Boydston, Lisa M. Lyren, Mathew Alldredge, Kenneth A. Logan, Linda L. Sweanor, Seth P. D. Riley, Laurel E. K. Serieys, Robert N. Fisher, T. Winston Vickers, Walter Boyce, Roy McBride, Mark C. Cunningham, Megan Jennings, Lyron, Lewis, Tamika Lunn, Kevin R. Crooks, Sond Sue Vandewoude,

Global Ecology and Conservation 16 (2018) e00441

Contents lists available at ScienceDirect

Global Ecology and Conservation

journal homepage: http://www.elsevier.com/locate/gecco

Review Paper

Identifying management-relevant research priorities for responding to disease-associated amphibian declines

Evan H. Campbell Grant ^{a, *}, Michael J. Adams ^{b, 1}, Robert N. Fisher ^c, Daniel A. Grear ^d, Brian J. Halstead ^e, Blake R. Hossack ^f, Erin Muths ^g, Katherine L.D. Richgels ^d, Robin E. Russell ^d, Kelly L. Smalling ^h, J. Hardin Waddle ⁱ, Susan C. Walls ⁱ, C. LeAnn White ^d

Biological Conservation 236 (2019) 296-304

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/biocon

Effect of amphibian chytrid fungus (*Batrachochytrium dendrobatidis*) on apparent survival of frogs and toads in the western USA

Robin E. Russell^{a,*}, Brian J. Halstead^b, Brittany A. Mosher^{c,d,1}, Erin Muths^e, Michael J. Adams^f, Evan H.C. Grant^c, Robert N. Fisher^g, Patrick M. Kleeman^h, Adam R. Backlinⁱ, Christopher A. Pearl^f, R. Ken Honeycutt^j, Blake R. Hossack^j

www.nature.com/scientificreports

Batrachochytrium salamandrivorans (Bsal) not detected in an intensive survey of wild North American amphibians

J. Hardin Waddle 1 Daniel A. Grear 2, Brittany A. Mosher 3,4,5, Evan H. Campbell Grant 4, Michael J. Adams 6, Adam R. Backlin 7, William J. Barichivich 1, Adrianne B. Brand 4, Gary M. Bucciarelli 8, Daniel L. Calhoun 9, Tara Chestnut 10, Jon M. Davenport 11, Andrew E. Dietrich 4, Robert N. Fisher 7, Brad M. Glorioso 12, Brian J. Halstead 13, Marc P. Hayes 14, R. Ken Honeycutt 15, Blake R. Hossack 15, Patrick M. Kleeman 16, Julio A. Lemos-Espinal 17, Jeffrey M. Lorch 2, Brome McCreary 6, Erin Muths 18, Christopher A. Pearl 6, Katherine L. D. Richgels 2, Charles W. Robinson 2, Mark F. Roth 19, Jennifer C. Rowe 6, Walt Sadinski 19, Brent H. Sigafus 20, Iga Stasiak 121, Samuel Sweet 22, Susan C. Walls 1, Gregory J. Watkins-Colwell 23, C. LeAnn White 2, Lori A. Williams 24 & Megan E. Winzeler 2, 25

- Dogs in the environment shedding disease
- People in the environment shedding disease
- Cats in backyards
- Release of pets into wildlands

New Emerging Infectious diseases

- White nosed syndrome
- RHDV2 Rabbit Hemorrhagic Disease Virus serotype 2 (in Southern California)
- Turtle shell fungus
- Snake fungal disease

Virome of Bat Guano from Nine Northern California Roosts

©Yanpeng Li,^{a,b} ©Eda Altan,^{a,b} ©Gabriel Reyes,^c ©Brian Halstead,^c Xutao Deng,^{a,b} ©Eric Delwart^{a,b}

IMPORTANCE Characterizing the bat virome is important for understanding viral diversity and detecting viral spillover between animal species. Using an unbiased metagenomics method, we characterize the virome in guano collected from multiple roosts of common Northern California bat species. We describe several novel viral genomes and report the detection of viruses with close relatives reported in other bat species, likely reflecting cross-species transmissions. Viral sequences from well-known carnivore and rodent parvoviruses were also detected, whose presence are likely the result of contamination from defecation and urination atop guano and which reflect the close interaction of these mammals in the wild.

TABLE 1 Summary of guano samples used in this study

California county	Collection date	Name ^a	Primary bat species ^b	No. of samples ^c	Estimated no. of animals
Bat roosts					
Marin	February 2020	CR1	Corynorhinus townsendii	1*	~300
	February 2020	CR2	Corynorhinus townsendii	1*	~500
	February 2020	MR1-A	Myotis yumanensis	1*	>100
	June 2020	MR1-B	Tadarida brasiliensis	10	>100
	June 2020	UR	Myotis yumanensis	10	>100
Yolo	June 2020	TR1	Tadarida brasiliensis	10	>1,000
Sacramento	June 2020	TR2	Tadarida brasiliensis	10	>100,000
	June 2020	TR3	Tadarida brasiliensis	10	>1,000
	June 2020	TR4	Tadarida brasiliensis	10	>1,000
Individual batse					
Marin	February 2020	MB	Myotis californicus and Myotis yumanensis		5

aRoost name.

^bSpecies found in each roost.

^cNo. of samples refers to the number of individual vials filled (an asterisk [*] indicates that many guano samples from the same roost were collected and mixed into one larger jar) from guano piles. For other roosts, 10 smaller guano samples were pooled prior to processing.

 $[^]d$ Estimated total size of the colony.

^eFor individual bat samples, guano samples were collected from free-flying individual bats captured during a field study.

FIG 2 Summary of the bat-associated viruses. All viral families identified from the 10 bat guano samples with E scores of $<10^{-10}$. Only those eukaryotic viruses that could potentially infect mammals or insects are shown. Heat map was used to indicate the viral abundance (calculated as reads per million [RPM]), and RPM was displayed in \log_{10} of each family. The numbers of viral families detected from each guano sample are listed at the bottom.

TABLE 2 Viral sequences that share high similarity with those of known viruses

Virus hita	GenPept or GenBank accession no. ^b	Sample origin	Country	E value	Identity (%)	No. of contigs/reads	Total length	Roost
			•		,	contigs/reads		
Bat calicivirus A10	AWK23451	P. subflavus	USA	8E-58	100%	1	284	TR4
Bat circovirus POA/V	AIX11629	M. molossus/T. brasiliensis	Brazil	2E-78	93.4%	1	369	TR1
Bat hepatovirus	YP_009505614	Coelura afra	Ghana	1E-23	93.9%	1	150	CR1
Bat mastadenovirus	AWT57880	Myotis emarginatus	Spain	8E-61	96.8%	1	289	MR1-A
Bat mastadenovirus G	YP_009325345	Corynorhinus rafinesquii	USA	\sim 1E $-$ 39 to 2E $-$ 68	\sim 93 to 97.2	2	757	MR1-A
Bat bocaparvovirus	AIF74240	Myotis pequinius	China	\sim 1E $-$ 41 to 4E $-$ 51	\sim 92.8 to 97.6	2	462	MR1-A
Bocaparvovirus sp.	AYG97822	Rodents	China	\sim 7E-47 to 9E-68	\sim 93.7 to 98.7	3	812	MR1-B
Canine parvovirus 2	_	Carnivores	*	0	100	2	549	TR4
Bocaparvovirus 1	AUD40074	Himalayan marmot	China	\sim 6E-57 to 3E-97	\sim 93.9 to 96.8	2	743	MR1-B
Mouse kidney parvovirus	NC_040843	Mus musculus	Australia/USA	\sim 1E $-$ 177 to 0	\sim 97.5 to 98.6	4	2,063	MR1-A
Myotis myotis bocavirus 1	YP_009508788	Myotis myotis	China	\sim 8E $-$ 24 to 1E $-$ 53	\sim 91.4 to 93.7	2	452	MR1-A
Porcine bocavirus 1	AEM43610	Pig	*	1E-30	91.20	1	251	MR1-B
Bat polyomavirus	AIF74282	Rhinolophus ferrumequinum	China	4E-42	94.50	1	221	UR
Gammapapillomavirus 11	ATQ38341	Human	USA	1E-46	100	1	225	CR1
Peromyscus papillomavirus 1	YP_009508760	Peromyscus (deer mouse)	USA	\sim 6E $-$ 10 to 2E $-$ 101	91.6 to 100	3	834	UR
Human rotavirus A	AIE45278	Human	*	1E-45	95.0	1	245	MR1-A
Rotavirus H		Pig	*	\sim 1E $-$ 18 to 4E $-$ 76	\sim 93.7 to 100	9	2,000	UR

^aVirus hits from NCBI database that shared high identity to the viral contigs/reads in this study.

^bA dash (-) indicates that the sequence shared the same identity (%) with multiple reference genomes.

^cAn asterisk (*) indicates that the reference sequence could be found in multiple locations.