Direct and Indirect Effects of Precipitation, Nitrogen, and Management on a Rare Coastal Sage Scrub Species: Acanthomintha ilicifolia Master's Thesis Presentation SDMMP: Kyle Rice, February, 2017 **Committee members:** Dr. Douglas Deutschman Dr. David Lipson Dr. Natalie Mladenov

Preliminary information, not for citation or distribution without consent of authors.

Outline

Introduction

- Project Selection
- Thornmint System
- Objectives
- Methods
- Results
 - Primary Variables: Flowering, Biomass
 - Secondary Variables: Leaf Metrics, Soil N

Conclusions

• Nitrogen, Water, Plant Treatment/Management

Project Selection

- Focus on local vegetation systems
- Nitrogen deposition, interaction with precipitation

 Species specific and compound specific responses

Study System

San Diego Thornmint Acanthomintha ilicifolia (ACIL)

San Diego Thornmint Acanthomintha ilicifolia (ACIL)

San Diego Thornmint Acanthomintha ilicifolia (ACIL)

Study System - Effects

San Diego Thornmint Acanthomintha ilicifolia (ACIL)

Objectives

- Examine how nitrogen deposition and climate variability impact the growth and productivity of rare species, using San Diego thornmint (*Acanthomintha ilicifolia*) and Purple False Brome (*Brachypodium distachyon*) as a case study.
- Measure response changes in the presence of increased conspecific and heterospecific densities and determine whether competitor identity influences the effects.
- Assess the effectiveness of Fusilade as a long-term management option for this system.

Outline

Introduction

- Project Selection
- Thornmint System
- Objectives
- Methods
- Results
 - Primary Variables: Flowering, Biomass
 - Secondary Variables: Leaf Metrics, Soil N

Conclusions

• Nitrogen, Water, Plant Treatment/Management

Methods – Experimental Design

replicates in a 3x3x4 design = 360 experimental units

8

	0 BRDS	1 BRDS	2 BRDS	
0 ACIL	0x0-	0X1	0X2	X
1 ACIL	1X0	1X1 <	1X2	
2 ACIL	2X0	2X1	2X2	

Extended Half

Methods – Experimental Design

Primary Experiment

2-species Mixture

Mixture with Fusilade

Methods – Response Variables

Primary

Secondary

Methods – Model/Data Analysis

Idealized Example: Soil Nitrate			
Source		df	
t s	Plant (4 Plant combinations and Herbicide)	3	
/Jair fec	Water (50%, 100%, 200%)	2	
Nitrogen (Ambient, NO3, NH4)		2	
ខ្ម Plant * Water		6	
ctio	Plant * Nitrogen	6	
B Water * Nitrogen		4	
Int	Plant * Water * Nitrogen	12	
Error (assuming 8 reps and no lost/extended units)		252	
Total	288		

- Traditional analysis 7 F-Tests evaluating if a source of variation is significantly different from zero.
- Managers often interested in major drivers/predictors
- Used model selection and interpretation approach based on Information Theory; BIC used here

Outline

Introduction

- Project Selection
- Thornmint System
- Objectives
- Methods
- Results
 - Primary Variables: Flowering, Biomass
 - Secondary Variables: Leaf Metrics, Soil N

Conclusions

• Nitrogen, Water, Plant Treatment/Management

Primary

Preliminary information, not for citation or distribution without consent of authors. **Results** – Thornmint Flowering Flowering Proportion of containers producing flowers Main Experiment **Flowers** No Flowers Herbicide ACIL No Herbicide Extended **Primary** No Herbicide Herbicide

Results – Thornmint Flowering

Extended

Results – Thornmint Biomass

Results – Thornmint Biomass

Results – Thornmint Biomass

Results – Brachypodium Biomass

Results – Brachypodium Biomass

Density Series

Outline

Introduction

- Project Selection
- Thornmint System
- Objectives
- Methods
- Results
 - Primary Variables: Flowering, Biomass
 - Secondary Variables: Leaf Metrics, Soil N
- Conclusions
 - Nitrogen, Water, Plant Treatment/Management

Results – Thornmint Leaf Metrics

Results – Soil Nitrate

Results – Soil Nitrate

Results – Soil Nitrate

Density Series

Results – Soil Ammonium

Results – Soil Ammonium

Density Series 1.25 Soil Ammonium (μg N / g soil) 1.00 0.75 В 0.50 AB AB AB AB AB AB 0.25 А \bot 0.00 Density 1x0 0x1 2x0 1x1 0x2 2x1 1x2 2x2 **Plant Grouping**

ACIL X BRDS

Results Summary

- Nitrogen effect weak
- Some water impacts

- Herbicide beneficial to vegetative growth
 - 3 week delay in flowering
 - Uptake of ammonium or conversion to nitrate
 - System recovers with time

Outline

Introduction

- Project Selection
- Thornmint System
- Objectives
- Methods
- Results
 - Primary Variables: Flowering, Biomass
 - Secondary Variables: Leaf Metrics, Soil N
- Conclusions
 - Nitrogen, Water, Plant Treatment/Management

Conclusions - Nitrogen

• Nitrophilous exotic

Brachypodium response to nitrogen = performance advantage over thornmint

• High starting levels?

Conclusions - Nitrogen

Understanding scale

Conclusions - Precipitation

 Impacts on phenology with earlier flowering in low water

- Volume of precipitation not individually responsible for productivity. Frequency?
- Management implication avoid long period dry spells

Conclusions – Plant Treatment/Herbicide

- Plant treatment and competitor presence have strong system effect
- Often lack of identity effects, possibly due to container restrictions

Conclusions – Plant Treatment/Herbicide

- Herbicide effective
 - Non-target effects Mortality, dieback, flower delay, N cycling changes
 - Recovery time often needed
- Do environmental conditions always allow for recovery?

Conclusions - Recommendations

- Many new questions and avenues of research
- Use of herbicide with caution
- Surfactant or concentration?
- Implement supplemental watering
- Monitor, monitor, monitor.....

Acknowledgements

- Committee members
 - Dr. Douglas Deutschman
 - Dr. David Lipson
 - Dr. Natalie Mladenov
- The Deutschman Lab
 - Gabriel!
- Soil Ecology Restoration Group (SERG)
- Rancho Santa Ana Botanical Garden
- Center for Natural Lands Management
- Endangered Habitats League
- Conservation Biology Institute
- CDFW
- Caroline (Fiancé)

Questions

