San Diego Hydrologic Vulnerability Study

SDMMP Meeting – June 23, 2021

Kris Taniguchi-Quan, SCCWRP

Study Objectives

Evaluate extent of current hydrologic alteration and future risk of hydrologic degradation to streams in the San Diego Regional Board 9 jurisdiction

Develop a risk-decision framework to aid in prioritization of stream reaches for protection, restoration, or management actions – focusing on potential effects to aquatic life and riparian condition

Intended Uses and Application

- Evaluate where current and future flow alteration may impact wildlife and sensitive species
- Identify priority areas of management concern and highquality streams that may be vulnerable to hydrologic change
- Flag areas where additional monitoring and further investigation are of high importance

Study Domain

San Diego Regional Board 9

Spatial Resolution

Vulnerability Definition

• Probability that biological condition decreases due to hydrologic change beyond a critical threshold

- Function of:
 - Current conditions
 - Expected future change
 - Resistance of a site

Proximity to critical threshold

Proposed Tasks

1. Assess current hydrologic alteration

2. Relate hydrologic alteration to biology

3. Predict probability of future change

4. Map vulnerability of hydrologic alteration

Conceptual Approach

- Evaluating hydrologic alteration through the lens of biology
 - Basing alteration on hydrology, not considering other factors (e.g., water quality, predation, etc.)
- Probabilistic risk-based approach versus deterministic
- Assessing vulnerability using a multi-endpoint analysis
 - Current and potential future conditions
 - Multiple ecological endpoints (i.e., focal species)
- Degree of vulnerability considers inherent sensitivity of system (maybe)
- Vulnerability is not limited to high quality streams

Task 1: Assess Current Hydrologic Alteration

- Model and map current hydrologic alteration relative to expected reference conditions
- Based on functional flow metrics:
 - Key aspects of the annual hydrograph that support biologic and geomorphic functions
- Requires prediction of both reference and current hydrology at all stream reaches (delta H)

Functional Flows

modified from Yarnell et al. 2010, 2015 BioScience

Functional Flow Metrics (FFM)

Five functional flow components for CA

Yarnell et al., 2019

Flow Component	Flow Characteristic	Flow Metric				
Fall pulse	Magnitude (cfs)	Peak magnitude of fall season pulse event (maximum daily peak flow during event)				
flow	Timing (date)	Start date of fall pulse event				
	Duration (days)	Duration of fall pulse event (# of days start-end)				
Wet-season base flows	Magnitude (cfs)	Magnitude of wet season baseflows (10th and 50th percentile of daily flows within that season, including peak flow events)				
	Timing (date)	Start date of wet season				
	Duration (days)	Wet season baseflow duration (# of days from start of wet season to start of spring season)				
Peak flow	Magnitude (cfs)	Peak-flow magnitude (50%, 20%, 10% exceedance values of annual peak flow> 2, 5, and 10 year recurrence intervals)				
	Duration (days)	Duration of peak flows over wet season (cumulative number of days in which a given peak-flow recurrence interval is exceeded in a year).				
	Frequency	Frequency of peak flow events over wet season (number of times in which a given peak-flow recurrence interval is exceeded in a year).				
	Magnitude (cfs)	Spring peak magnitude (daily flow on start date of spring-flow period)				
Spring	Timing (date)	Start date of spring (date)				
recession flows	Duration (days)	Spring flow recession duration (# of days from start of spring to start of summer base flow period)				
	Rate of change (%)	Spring flow recession rate (Percent decrease per day over spring recession period)				
	Magnitude (cfs)	Base flow magnitude (50th and 90th percentile of daily flow within summer season, calculated on an annual basis)				
base flows	Timing (date)	Summer timing (start date of summer)				
base flows	Duration (days)	Summer flow duration (# of days from start of summer to start of wet season)				

Natural Flows Database (modeled natural FFM)

rivers.codefornature.org

The Nature W	NATUR	AL FLOWS						Jourgonnata
+ - Six Rive National F	ers	and the	Sheldon National	>	Naga Kalley	Howell Mountain	CX regs	Berryles
No.	Vacional Fores	COMIE NAPA	D: 1669113 RIVER				×	Spanish Fla
Eureka	1 C		Flow Component	Year	Туре	Recurrence Interval		a b b a m
A.	200		Dry-season base flow \vee	All Ye	ars ∨	2-yea	ir v	
and the second sec		FLOW	METRIC	10th pctl	50th pctl	90th pctl	Observed Med.	Atlas
	Dry-season median baseflow		0.22 CFS	5.75 CFS	19.7 CFS	2.6 CFS	J K W	
		Dry-season high baseflow		11 CFS	31 CFS	73.5 CFS	25.4 CFS	
		Dry-se	eason start	Apr. 16	May. 25	Jul. 7	<u>May. 15</u>	A anizas Corr
		<u>Dry-se</u>	eason duration	141 DAYS	200 DAYS	258 DAYS	215 DAYS	Marsin Rockvills
			<	+	19 (12 3) della			
× Zoom in and se	elect a strea	am segment to vi	Lompoc Santa Barbara Santa Clarita Oxnard Los Angel iew flow predictions	victorville es Riverside	ell tain	11e 1403	- And A	American Canyon Sulphur Springs Valley
sri, USGS Esri, HERE, Gar	rmin, FAO, NC	AA, USGS, Bureau	of Land Management, EPA, NPS	Powered By Esri		615	2	A A A A A A

Model Current Hydrology

- Model current FFM and alteration for all stream reaches in the region
 - Challenge: predictions in ungauged, urban watersheds
- Approaches we are exploring:
 - 1. Random forest model: predict Delta H in functional flow metrics based on watershed characteristics and climate (SDSU, Hilary McMillan)
 - 2. Logistic regression: predict probability of alteration of functional flow metrics (for watersheds with high uncertainty using approach 1)

Random Forest Approach

Validating using Observed Data and Existing Watershed Models

Existing watershed models and/or hydrologic data that we could leverage?

Task 2: Relate Hydrologic Alteration to Biology

- Assess hydrologic alteration relative to:
 - Bioassessment indicators for bugs and algae (CSCI & ASCI)
 - Focal species of management concern (future TAG meeting)
- What are the alteration thresholds that determine effects on biology?

Bioassessment Indices

Determine reference expectations

Compare to observed

Determine index score

Natural environmental variables are used to predict the biological composition (species and their ecological traits) at a site if it's healthy.

= CSCI Score

CSCI Components Taxonomic **Species** Completeness **#** Species # Shredders Measures of ecological % Clingers traits % Coleoptera (structure and % EPT * function) % Intolerant *EPT = Ephemeroptera + Plecoptera + Trichoptera

CA Stream Condition Index (CSCI)

Algal Stream Condition Index (ASCI)

Alteration Based on Bioassessment Indicators

Focal Species of Management Concern

Arroyo Toad

Black Crowned Night Heron

Least Bell's Vireo

What we are Considering

- Changes in flow due to:
 - Changing discharges, climate, and land use

• We are **NOT** considering:

- Changes in temperature, habitat, groundwater

Alteration Based on Focal Species

- Map current known species occurrence and habitats across region
- Select focal species of management concern
- Develop or refine existing ecological response models

• Evaluate current or future alteration impacts on focal species suitability

Determine Critical Thresholds of Alteration

- Flow thresholds for multiple endpoints
 - Probability based
- Evaluate where flow alteration is likely affecting aquatic life beneficial use

Functional Flow Metric

Task 3: Predict Probability of Future Change

Use models to predict probability of future changes in flow and potential impacts to biology

- What future changes should we evaluate?
 - Climate change projections
 - Projected land use changes
 - Other scenarios?

Task 4: Map Vulnerability of Hydrologic Alteration in Consideration of Sensitivity

Define vulnerability and develop vulnerability framework
Based on current (Task 1, 2) and future (Task 3) conditions

• Quantify and map vulnerability across region

Challenge: how to integrate Task 1-3 to get overall vulnerability score?

Vulnerability Based on Proximity to Thresholds

- Vulnerability +

Vulnerability +

Vulnerability Based on Change in Probability of Condition

Change relative to thresholds

Change relative to probability of condition

Vulnerability Based on Potential Range of Expectations

Statewide landscape models estimate range of CSCI expectations (Beck et al., 2019)

Vulnerability Based on Position Relative to Expectations

Random forest models used to generate range of expectations for each location based on level of alteration

Vulnerability based on current condition relative to range of expectations

CSCI Score

Data Gaps

- Observed streamflow records
- Existing watershed models
- Species occurrence data
- Habitat mapping

User Friendly Products

- Maps of currently altered and vulnerable areas
- Maps of currently observed species and potential occurrences
- App to explore "beneficial use" status based on flow thresholds
- App to explore vulnerability based on future scenarios
- Guidelines on use and interpretation of tools

Vulnerability in 2050

Downscaled GCM: CanESM2 (RCP 8.5)

Products will be refined based on discussion with TAG and Water Board Sophistication of products will partly be determined by available budget

General Schedule

Task	Oct 20	Jan 21	Apr 21	July 21	Oct 21	Jan 22	Apr 22	July 22	Oct 22	Jan 23
Current Alteration										
Alteration Impacts to Bio										
Future Alteration										
Map Vulnerability										
TAG meetings										

Next TAG meeting: modeling current hydrologic alteration (Task 1)

Potential Partnership with SDMMP

- Identification of priority areas of management concern
- Collaborate on project elements:
 - Existing species and habitat mapping
 - Focal species selection
 - Development of future scenarios
- Tools and products to inform management and monitoring strategic plans
 - Vulnerability mapping to inform priority areas for monitoring
 - Data sharing and potential tools training with SDMMP

Questions

Kris Taniguchi-Quan kristinetq@sccwrp.org

Katie Irving katiei@sccwrp.org

Eric Stein erics@sccwrp.org

www.sccwrp.org

